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Abstract— We consider a class of control systems where the
plant model is unknown and the feedback contains only partial
quantized measurements of the state. We use a nonlinear opti-
mization that is taking place over both the model parameters
and the state of the plant in order to estimate these quantities.
We propose a computationally efficient algorithm for solving the
optimization problem, and prove its convergence using tools
from convex and non-smooth analysis. We demonstrate the
importance of this class of control systems, and our method of
solution, using the following application: having a fixed wing
airplane follow a desired glide slope on approach to landing.
The only feedback is from a camera mounted at the front of
the airplane and looking at a runway of unknown dimensions.
The quantization is due to the finite resolution of the camera.
Using this application we also compare our method to the basic
method prevalent in the literature, where the optimization is
only taking place over the plant model parameters.

I. INTRODUCTION

A quantizer is a device that converts a real-valued signal
into a piecewise constant one taking a finite set of values. In
this paper we consider fixed output quantization, for example
due to sensors of limited resolution. This type of quantization
had been studied, among many others, in [1], [2] and [3].
We remark that many of the recent results on quantization
consider dynamic quantization, for example [4] and [5].

When the plant dynamics are unknown and system identi-
fication, but not stabilization, is desired, we mention [6], [7],
and [8] among others which address the issue of quantization.
Surprisingly, very few papers dealt with the problem of
stabilization when the plant dynamics are unknown, despite
the prevalence of this problem in many control applications.
Two papers, [9] and [10], consider input quantization. The
assumption taken by these papers, of input quantization
with deterministic quantizers, makes a fundamental differ-
ence from the settings of output quantization: With the
controller knowing the input acting on the plant, a certainty
equivalence principle separates the estimation of the plant
dynamics from the effects of quantization. In [11] robustness
to variations in the plant dynamics is proved using a specific
dynamic quantization scheme. As the actual plant dynamics
are not estimated, this requires the variation of the plant
dynamics from some nominal model to be sufficiently small.
Using supervisory control, [12] switches between several
controllers, finds the one that best approximates the actual
plant dynamics, and uses that one to stabilize the system.
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To generate the stabilizing control input, or to identify sys-
tem parameters, an estimate of the state needs to be extracted
from the quantized measurements. The basic approach is to
select the center of the quantization regions as the state esti-
mate. This was the approached followed by all the references
cited above, including proofs of convergence for example in
[6]. However, as we show in this paper, the convergence may
be too slow and a more careful treatment of the quantized
measurements, with their special characteristics, needs to be
employed in selecting the state estimate. Here we follow-up
on the approached proposed in [13] in the context of system
identification. The first novelty in our paper is an alternative
computational approach for solving the optimization problem
that selects the state estimate.

The second novelty is the development of a simulation,
on which this new approach can be tested, of a vision-based
control problem: controlling a fixed-wing airplane to follow
a gliding path on approach to landing. The only available
feedback for the landing controller is a camera mounted
on the airplane and looking at the runway. The source of
quantization in this problem is the pixelization of the image.
We believe that the development of a simulation platform
for this problem has merits of its own in exposing the issue
of quantization in vision-based control, and in the ability to
compare different approaches for addressing this issue. As
an application, we expect the settings we consider here to be
applicable to small unmanned aerial vehicle (UAV) where
one may want to avoid installing gyroscopes due to cost and
weight considerations. For a complete flight control system
though, the addition of at least an airspeed indicator to our
settings would be required to measure this critical quantity
that cannot be observed by the camera.

For the sake of completeness we cite [14], [15] and [16]
as some of the other works which address the problem of
landing by vision only. As each of these studies uses dif-
ferent settings and a different set of assumptions, we cannot
compare their results to ours. We do not cite other studies
where vision is only used for guidance, and the control task
is accomplished using inertial sensors (gyroscopes).

Outline: In §II we formulate the general problem we
address in this paper and propose an algorithm for solving
the problem; in §III we provide a convergence result for
the proposed algorithm; starting from §IV we focus on
the specific application; in §IV we recall the longitudinal
dynamics of an airplane, and derive a reduced order model;
in §V we make the connection between the camera input and
the state of the airplane; in §VI we describe the controller and
in particular the control law; and finally in §VII we present



simulation results. We conclude with final remarks in §VIII.

II. PROBLEM FORMULATION AND ESTIMATION METHOD

Consider a control system which consists of a plant, a
quantizer, and a controller. The plant is assumed to be linear
time variant (LTV):

ẋ (t) = A (t, a)x (t) +B (a)u (t) +D (a)

y (t) = Cx (t) z (t) = E (t, a) (1)

where x(t) ∈ Rn is the state of the plant, u(t) ∈ Rm
is the control input, y(t) ∈ Rp (p ≤ n) is the output
signal which is sampled by the quantizer, z(t) ∈ Rq is an
uncontrollable signal that is sampled by the quantizer and
assists in estimating the model parameters, and a ∈ Rl is
the vector of (the constant) model parameters. The matrices
A (t, a), B (a), C, D (a) and E (t, a) are of appropriate
dimensions. Their structure, as a function of the model
parameters, a, and possibly of the time, is known, but the
model parameters themselves are unknown.

The quantizer samples the signals y and z once every τ
seconds, and for each individual element, yi and zj , sends
the controller an interval which contains this element. Thus
up to time t, assuming the sampling started at t = 0, the
information available to the controller is the lower and upper
bounds, y

i
(kτ) < yi (kτ), i = 1, . . . , p, k = 0, . . . , bt/τc as

well as zj (kτ) < zj (kτ), j = 1, . . . , q, k = 0, . . . , bt/τc,
such that for each i, j, and k: y

i
(kτ) ≤ yi (kτ) ≤ yi (kτ)

and zi (kτ) ≤ zi (kτ) ≤ zi (kτ). The controller estimates
the state and the model parameters based on this information,
and then uses that estimate to generate the control input that
will drive the system to some desired steady-state value. The
estimation, independent of the law by which the control input
is generated, will be discussed in this section. In §VI we will
provide an example of a control law.

By restricting to piecewise constant control input such that
∀k ∈ N: u (t) = u (kτ) ∀t ∈ [kτ, (k + 1) τ), the continuous
plant dynamics (1) can be written in discrete form as:

x ((k + 1) τ) = Ak (a)x (kτ) +Bk (a)u (kτ) +Dk (a)

y (kτ) = Cx (kτ) z (kτ) = Ek (a) . (2)

While it is possible to compute Ak, Bk, Dk and Ek such
that (2) tracks (1) exactly, taking Ak (a) = e

∫ kτ+τ
kτ

A(s,a)ds

for example, in many cases an approximation as the one we
use in §VI will be sufficient. Define

Uk+1
.
=
[
uT (0) , uT (τ) , . . . , uT ((k − 1) τ)

]T
Yk+1

.
=
[
yT (0) , zT (0) , yT (τ) , . . . , yT (kτ) , zT (kτ)

]T
,

and consider

E (k, Yk, Uk, a) = A (kτ, a)

 y ((k − r) τ)
...

y ((k − 1) τ)

+ (3)

B (kτ, a)

 u ((k − r) τ)
...

u ((k − 1) τ)

+ D (kτ, a)− y (kτ)

where r is the observability index (assumed to be constant)
for the system (Ak, C), and A, B and D are such that when
the values in Yk and Uk follow the dynamics in (2) we get
E (k, Yk, Uk, a) = 0. The existence of such A, B and D
is a standard result of discrete-time systems. We refer to
E (k, Yk, Uk, a) as the modeling error.

We define the cost function,

f (YN , a)
.
=

N∑
k=r

‖E (k, YN , UN , a)‖22 +

N−1∑
k=0

‖E (kτ, a)− z (kτ)‖22 ,

and propose the following minimization problem in order to
estimate both the state and the model parameters:

min
a,YN

f (YN , a)

subject to ∀k ∈ [0, . . . , N − 1] : (4)
y
i
(kτ) ≤ yi (kτ) ≤ yi (kτ) ∀i ∈ [1, . . . , p]

zi (kτ) ≤ zi (kτ) ≤ zi (kτ) ∀j ∈ [1, . . . , q] ,

where N is the number of quantized output measurements we
collected. Problem (4) is a constrained nonlinear minimiza-
tion problem. We solve it using the following iterative pro-
cess: In each iteration fix YN and find a that minimizes the
cost function; then with the new a, find YN that minimizes
the cost function and satisfies the constraints. When a is
fixed, minimizing over YN becomes a constrained quadratic
programming problem for which there exist computationally
efficient solvers. Minimizing over a when YN is fixed can
still be a nonlinear minimization problem, but it is now
unconstrained, and it has a fixed (small) number of variables
that does not grow with N . In many cases, as in the problem
we address below, we can derive the second derivative, the
Jacobian, explicitly and solve it efficiently using general
purpose nonlinear solvers. The algorithm can be initialized
with any YN that satisfies the constraints. We remark that
the convergence of this algorithm is performed online, such
that with every iteration more measurements are added.

III. PROOF OF CONVERGENCE

Because f (YN , a) is quadratic in YN , we can rewrite (4),
for fixed N and UN , as

min
a,Y
‖Q (a)Y − r (a)‖22

subject to Y i ≤ Yi ≤ Y i ∀i ∈ [1, . . . , n] (5)

where Y ∈ Rn, Q : Rl → Rm×n, r : Rl → Rm (the n
and m defined in this section are different from the n and
m defined in the previous section). Note that m < n. In
proving convergence of our proposed iterative algorithm, we
will refer to (5) as the problem being minimized. We define
Y to be the set of Y ’s satisfying the inequality constraints.
We say that a is a critical point of f for a given Y if

∂f (Y, a)

∂ai
= 0, ∀i ∈ {1, . . . , l} . (6)



We say that Y is a critical point of f for a given a if

∂f (Y, a)

∂Yi
≤ 0 if Yi > Y i,

∂f (Y, a)

∂Yi
≥ 0 if Yi < Y i,

∀i ∈ {1, . . . , n} . (7)

And we say that (Y, a) is a critical point of f if both (6) and
(7) hold. We define σ as the function that maps each Y ∈ Y
to the set of critical points of f given Y .
Consider the following assumptions:

1) The functions Q (·) and r (·) are continuous.
2) Let (Yk, ak) and (Yk+1, ak+1) be the estimated values

before and after iteration k of the algorithm. Then for
every k: ak+1 ∈ σ (Yk), f (Yk, ak+1) < f (Yk, ak) if
ak+1 6= ak, Yk+1 is a critical point of f given ak+1,
and f (Yk+1, ak+1) < f (Yk, ak+1) if Yk+1 6= Yk.

3) There exists K ∈ N such that the number of critical
points of f given Y , σ (Y ), is smaller than K for every
Y ∈ Y , and furthermore, σ (·) is continuous.

We now can state the following convergence result:
Proposition 3.1: Given that assumptions 1-3 hold, the

iterative algorithm described above converges to a set M
of critical points of f .

The proof is based on the compactness of Y; on the
continuity of σ (Y ), due to assumption 3, which also implies
compactness of σ (Y); on the fact that arg minY ∈Y f (a, Y )
is closed as a function of a due to a result from [17]; and
finally on the Discrete-time LaSalle Invariance Principle for
set-valued maps, [18, Theorem C.1]. The complete proof,
omitted here, can be found in the unabridged version of this
paper available online on the first author’s website.

We find appropriate to report here an additional result,
even though its implication is still under investigation. Set
nQ = rankQ. We say that Q ∈ Rm×n is in general
directions if every nQ columns of Q are linearly inde-
pendent. We also define V (a)

.
= minY ∈Y f (Y, a), and

P0
.
=
{
a ∈ Rl |V (a) = 0

}
(P0 might be an empty set).

Proposition 3.2: With the additional assumption that the
functions Q (·) and r (·) are C2 (twice continuously differen-
tiable), the vector of model parameters a in the iterative algo-
rithms described above converges to a set M ⊂ Rl for which
one of the following holds: (1) M ⊆ P0; (2) Q (M) contains
matrices not in general directions; (3) for every a ∈ M ,
the directional derivative V ′ (a; v)

.
= limε↘0+

V (a+εv)−V (a)
ε

exists and satisfies V ′ (a; v) ≥ 0, ∀v ∈ Rl \ 0.
This proposition is mainly due to a result from [19]. Due

to disturbances and non linearity in the system, and the zero
measure of the set of matrices not in general directions in
Rm×n, we expect the third case to be the prevailing one.

We now address the assumptions we made. Assumption 1
holds with many models. Most optimization tools satisfy
assumption 2 (ignoring numerical errors). For assumption 3
to hold we need that the number of locally minimizing a’s
be finite for any Y ∈ Y . This requires Y to be sufficiently
exciting in some sense (depending on the specific model
and the quantization). We are still investigating what other
conditions need to be satisfied in order to guarantee that
assumption 3 holds.

IV. AIRPLANE DYNAMICS

We consider only the longitudinal dynamics in the vertical
plane, and we make the following assumptions. There is
no difference in elevation between the two ends of the
runway. The aircraft has static stability — the control system
consisting of only the pitch and the pitch rate, with all other
signals considered as external input, is open-loop stable. The
unknown wind velocity has only a fixed (independent of
height) horizontal component. There is no thrust (power off
landing). The lift, drag and gravitational forces, associated
with the pitch angle required to follow the desired glide slope
at the initial velocity, are at a balance such that the velocity
remains relatively steady. And finally, we assume the airplane
starts relatively close to the desired glide slope angle. In the
last section we will test our method on the dynamics of a
Cessna 172.

This section is divided into two subsections. In the first
subsection we state the true dynamics of the airplane. In the
second subsection we approximate the true dynamics using
an LTV model. We emphasize that while we use the LTV
model to design the implementation of our method, we use
the true dynamics to test it in simulation.

A. True Dynamics

By considering only longitudinal dynamics in the vertical
plane, we are left with six degrees of freedom describing the
motion of the airplane1:

px
pz

}
— position

vx
vz

}
— velocity

θ

θ̇

}
— pitch angle and pitch rate. (8)

All the quantities above are defined in the frame of reference
whose origin is fixed at the beginning of the runway. The x-
axis positive direction is defined such that the runway is on
the positive side of this axis. The z-axis positive direction
is up. The control input is the elevator deflection, δe, which
measures the angular displacement of the elevator from its
trim position.

Using the six quantities in (8) and several aerodynamics
constants we can derive the equations of motion. These
equations can be found in any textbook on flight dynamics,
[20] for example. We will use the following rotation matrix

in deriving the equations: R (φ)
.
=

[
cosφ − sinφ
sinφ cosφ

]
. A

standard way of computing the forces acting on the airplane
is to first compute the lift and the drag. The lift is the
aerodynamic force perpendicular to the relative wind, and the
drag is the aerodynamic force parallel to the relative wind.
Both forces are assumed to act on the center of lift.

The complete derivation of the equations of motion is as
follows:

1) Angle of relative wind, ϕ = tan−1 (vz/ (vx + vwind)).

1The standard state used in the literature on automatic landing includes:
true airspeed vT , angle of attack α, pitch θ, pitch rate q = θ̇, height h = pz ,
and deviation from the glide slope d [20, p.341]. Knowing the wind one
can translate between this standard state and (8).



2) Angle of attack, α = θ − ϕ.
3) Airspeed, VT =

∥∥∥[vx + vwind, vz]
T
∥∥∥.

4) Lift coefficient, CL = CLα (α) + CLq θ̇c̄/ (2VT ) +
CLδe δe.

5) Drag coefficient, CD = CDα (α) +
∣∣CDδe δe∣∣.

6) Pitch moment coefficient, Cm = Cmα (α) +
Cmα̇ α̇c̄/ (2VT ) + Cmq θ̇c̄/ (2VT ) + Cmδe δe.

Remark: Above CLq , CLδe , CDδe , Cmα̇ , Cmq and Cmδe
are airframe dependent empirically obtained constants; CLα ,
CDα , Cmα are airframe dependent functions of the angle of
attack, and are derived from tables of empirically obtained
values. Below ρ is the air density which we assume to be
constant, and S is the wing area.

7) Lift, L = 0.5CLρV
2
T S.

8) Drag, D = 0.5CDρV
2
T S.

9) Linear aerodynamic forces, F = R (ϕ) [−D,L]
T

10) Pitch moment, M = 0.5CmρV
2
T Sc̄+(R (θ)Dcg)×yF

where [x1, z1]
T ×y [x2, z2]

T .
= z1x2 − x1z2.

11) Linear accelerations, v̇x = Fx/W , v̇z = Fz/W − g,
where W is the weight of the aircraft, and g is the
acceleration due to gravity.

12) Angular acceleration, θ̈ = M/Iyy where Iyy is the
moment of inertia around the pitch axis.

13) Linear velocity, ṗx = vx, ṗz = vz .

B. Reduced Order Model

We define the reduced order state: x .
=
(
θp, θv, θ, θ̇

)T
,

where θp
.
= tan−1 (pz/px)− γR, θv

.
= tan−1 (vz/vx)− γR,

and γR is the (negative) desired glide slope angle. In the
literature on airplane dynamics, γR + θv is referred to as the
flight path angle, γ. The motivation for this choice of state
is that our main goal is to drive θp to zero. The dynamics
of θp depend strongly on all the signals in x, thus we also
need to drive these signals to some appropriate values. As
the dynamics of θp depend on the remaining signals from
the full order model, d =

√
p2x + p2y and VE =

√
v2x + v2z ,

only through multiplications with the states already in x, we
exclude explicit reference to these states in the system model
that we attempt to control. Note that by our convention,(
px
pz

)
= d

(
− cos (θp + γR)
− sin (θp + γR)

)
,

(
vx
vz

)
= VE

(
cos (θv + γR)
sin (θv + γR)

)
.

We now rewrite the dynamics for this reduced order state.
We start with the θp dynamics:

θ̇p =
1

1 + (pz/px)
2

vzpx − vxpz
p2x

=
VE
d

(sin (θp) cos (θv)− sin (θv) cos (θp))

If we assume that throughout the approach maneuver, θv and
θp remain relatively small and VE stays relatively fixed, then
we can approximate the θp dynamics with

θ̇p ≈
1

tf − t
θp −

1

tf − t
θv (9)

where tf is the time we expect to reach the beginning of the
runway (d/VE = tf − t).

We continue with the θv dynamics. We approximate the
factors which depend on the angle of attack, α, in the lift
and drag coefficients with linear functions, and neglect the
remaining factors, due to their relatively small contribution.
This results in

CL ≈ CL,1α+ CL,0 CD ≈ CD,1α+ CD,0.

With that we have (using φ .
= θv + γR − ϕ),

θ̇v =
1

VE
[− sin (θv + γR) , cos (θv + γR)]×(

R (ϕ)
ρV 2

T S

2W

[
−CD
CL

]
−
[

0
g

])
≈ ρV 2

T S

2VEW
(− sin (φ)CD,1 + cos (φ)CL,1) (θ − ϕ) +

ρV 2
T S

2VEW
(− sin (φ)CD,0 + cos (φ)CL,0)− g cos (γR)

VE
,

where we also used the approximation cos (θv + γR) ≈
cos (γR) assuming θv is relatively small. In the windless
case, φ = 0 as ϕ = θv + γR, and it is easy to see how
a linear model can be derived:

θ̇v ≈ −Cv→vθv + Cp→v (θ − θ0) (10)

where Cv→v , Cp→v and θ0 are considered constants. They
do depend on VT as well as on other environmental variables
such as the air pressure and the weight of the aircraft, but
we assume that all of these variables (including, in particular,
VT ) change only slightly throughout the approach maneuver.
We claim that the linear model (10) is a good approximation
even when there is a wind, where now the three constants
just mentioned also depend on the wind speed.

We finish with the angular acceleration, θ̈, dynamics. We
see that M is the sum of two terms, one which depends
on the pitch moment coefficient, and one due to the linear
aerodynamic forces. Since we found that the second term
is small compared to the first, we approximate the angular
acceleration dynamics without it. If we further approximate
Cm/α (α) ≈ Cm,1α+ Cm,0, then its not hard to see that in
the windless case the angular acceleration can be written as:

θ̈ ≈ Cv→θ̇θv + Cθ→θ̇θ + Cθ̇→θ̇ θ̇ + Cδe→θ̇ (δe − δ0) . (11)

And again, we claim that the linear model (11), with different
constants, is a good approximation even when there is wind.

V. CAMERA FEEDBACK

We assume a runway recognition algorithm provides the
information about the rows corresponding to different points
on the runway, and the width of the runway at these points.
All the information is given in pixels, but knowing the
parameters of the camera and the angle at which it is installed
on the aircraft, we can easily translate the rows into angles in
the vertical plane from any reference axis fixed to the aircraft.
The reference axis we use is the longitudinal axis, which is
also used to define the pitch angle as the angle between this



axis and the plane tangent to Earth’s surface. Points below
the reference axis will be associated with a negative angle.
Summarizing, we assume we have the following information
(all the widths are given in pixel units):
φ
b

φb — the angle in the vertical plane at which
the runway begins

wb wb — the width of the runway where it begins
wb′ wb′ — the width of the runway in the first row

of pixels above φb
φ
e

φe — the angle in the vertical plane to an
arbitrary point on the runway

we we — the width of the runway at φe
Each quantity comes with a lower and upper bound, denoted
by the underline and the overline respectively, which is the
result of the pixelization.

We now discuss the physical quantities we can derive
from these measured quantities. First, the angle at which
the runway begins, φb, relates to our state variables as

φ
b
≤ γR + θp − θ ≤ φb. (12)

Second, the width in pixels of the runway where it begins,
wb, relates to the distance to the runway as wb = µ/d, where

µ
.
=

runway width (meters)

tan
(

horizontal field of view (degrees)
2

) (number of pixels on
the horizontal axis

)
Last, a pixel at a vertical angle φ corresponds to a point

on the surface which is at an angle of −φ − θ below the
horizon from the aircraft point of view. The distance to that
point, assuming a planar terrain, is sin(−φ0−θ)d0

sin(−φ−θ) where d0 is
the distance to another point on the surface which appears at
an angle φ0. We just showed that the distance to any object
on the surface is inverse proportional to the width in pixels
of that object. Thus we have that

wb′

we
≤ sin

(
−φb − θ

)
sin
(
−φ

e
− θ
) ≤ wb′

we
(13)

from which we can derive bounds for possible values of θ.
There is not a closed form solution to derive these bounds,
but they can be easily calculated using simple iterative
methods.

Although wb is not controllable, estimating it helps us to
estimate the time we expect to reach the runway, since

wb =
µ

VE (tf − t)
.
=

Cw
tf − t

. (14)

VI. CONTROLLER

In (9), (10), (11), (14) we have established that (1) is appli-
cable to our system, where u (t) = δe (t), z (t) = wb (t), a .

=[
tf , Cv→v, Cv→θ̇, Cθ→v, θ0, Cθ→θ̇, Cθ̇→θ̇, Cδe→θ̇, δ0, Cw

]
.

Defining x′ (k) = x (kτ), u′ (k) = u (kτ) , we approximate
the continuous dynamics with the following discrete version:
x′ (k + 1) = x′ (k) + τ (A (kτ)x′ (k) +Bu′ (k) +D). We
then use the algorithm from §II to estimate the state and the
model parameters as the system evolves.

Since we estimate a discrete linear model, and we have
constraints on the control input, we chose to use Model

Predictive Control (MPC) [21]. In order to use the MPC
in the standard settings, we transform our LTV system to
an LTI (linear time invariant) system by using the following
state variables:

x̃k (k) =


(tf − (k − 1) τ)x1 (k)

x3 (k)− p0
(tf − (k − 2) τ)x1 (k − 1)

x3 (k − 1)− p0

 .
The transformed state variable follows x̃k+1 = Ãx̃k +
B̃ (u− ẽ0) ∀k for some constant matrices Ã and B̃, where
ẽ0 = e0−Cθ→θ̇p0/Cδe→θ̇. The control horizon of the MPC
is denoted by H . In order to satisfy conditions A1–A4 in
[21, §3.3], which ensure closed-loop asymptotic stability
in the non-adaptive case, we use the terminal constraint
x̃k+H = 0 and uk+H = ẽ0. We use a quadratic cost
where we only penalize the change in the control action:∑k+H
i=k+1 (u (i)− u (i− 1))

2.

VII. SIMULATION RESULTS

We used a Cessna 172 model for our simulation. The
numerical values were taken from [22] that lists several
dynamical models to be used with the FlightGear Flight
Simulator [23]. We positioned the airplane 250 m from the
runway on the desired 1 to 9 ratio glide slope. The initial
velocity was set to 36 m/s (∼70 knots) true air speed, moving
parallel to the ground, no flaps configuration. The pitch and
pitch rate were initialized to zero. Wind was set to 5 m/s
headwind, ISA atmospheric conditions. The airplane weight
was set to 2405 lb. The camera’s field of view was 32◦

(horizontal) by 24◦ (vertical), its resolution was 640 by 480,
and it took 50 frames per seconds (fps). The width of the
runway was 20 m and φe was associated with a point on
the runway that was distanced 200 m from the beginning of
the runway. The simulation time constant (the time interval
between each update of the dynamics) was 0.01 s. We started
the simulation using an open-loop control consisting of
several step functions. After 2 seconds we started running the
estimator, and for every new measurement received we ran
two iterations of the estimator. After 3 seconds we closed the
loop by engaging the model predictive controller. The control
input was limited to ±12◦. The control horizon was set to
H = 150 (or 3 s). Once the field of view was too small
to cover the whole width of the runway where it begins,
the controller was disengaged and the elevator deflection
remained constant. We did not simulate ground effect.

We show here two runs of our simulation. In the first
run we used the approximated dynamics which we derived
in §IV-B. The reason is that this way we know exactly to
which model parameters the estimator should converge. In
the second run we used the true airplanes dynamics from
§IV-A. In the first run, in addition to the quantized estimator
from §II, we also used a basic estimator for comparison.
The basic estimator does not take into account the special
characteristics of quantized measurements, and attempts to
fit a model to measurements which are the center of each
quantization range. Essentially the basic estimator minimizes
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Fig. 1. Comparison between the quantized estimator and the basic estimator
using simulated linearized airplane dynamics. The first row of figures shows
some of the estimates of the quantized estimator. The second row of figures
shows the same estimates of the basic estimator. The x-axis in all the figures
represents time (seconds). The horizontal dotted black lines in both sets of
figures represent the true model parameters. Note the estimation error of
the basic estimator compared to the quantized estimator especially in the
estimation of Cv→v and of Cθ→v . The vertical dotted black lines in all the
figures represent the time when the model predictive controller was engaged.
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Fig. 2. Simulation of true airplane dynamics using the quantized estimator.
The 4 figures show the 6 degrees of freedom state of the airplane and the
control input. The slanted dotted black line in the top figure indicates the
desired glide slope.

the same cost function from (4) but only over the model
parameters.

The results are shown in Figures 1 and 2. The results show
significant improvement in the estimation error between the
basic estimator and the quantized estimator. They also show
that with the quantized estimator we were able to stabilize
the system. In an additional run, not shown here, we used
the basic estimator with which the system failed to stabilize.

VIII. CONCLUSION

We formulated an adaptive control problem using quan-
tized measurements. We used an engineering application to
establish the importance of this formulation, and demon-
strated the benefits that can be gained by a more careful
selection of the measurements within the quantization ranges.
We acknowledge that the results here are preliminary and
we hope that this work will lead to more research on this

issue. The most important step would be to provide proof
of stability for the closed loop control system, as well as
to show that it is robust to small variations to the dynamics
from the linear model.
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